Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: covidwho-20242199

RESUMO

This study characterizes antibody and T-cell immune responses over time until the booster dose of COronaVIrus Disease 2019 (COVID-19) vaccines in patients with multiple sclerosis (PwMS) undergoing different disease-modifying treatments (DMTs). We prospectively enrolled 134 PwMS and 99 health care workers (HCWs) having completed the two-dose schedule of a COVID-19 mRNA vaccine within the last 2-4 weeks (T0) and followed them 24 weeks after the first dose (T1) and 4-6 weeks after the booster (T2). PwMS presented a significant reduction in the seroconversion rate and anti-receptor-binding domain (RBD)-Immunoglobulin (IgG) titers from T0 to T1 (p < 0.0001) and a significant increase from T1 to T2 (p < 0.0001). The booster dose in PwMS showed a good improvement in the serologic response, even greater than HCWs, as it promoted a significant five-fold increase of anti-RBD-IgG titers compared with T0 (p < 0.0001). Similarly, the T-cell response showed a significant 1.5- and 3.8-fold increase in PwMS at T2 compared with T0 (p = 0.013) and T1 (p < 0.0001), respectively, without significant modulation in the number of responders. Regardless of the time elapsed since vaccination, most ocrelizumab- (77.3%) and fingolimod-treated patients (93.3%) showed only a T-cell-specific or humoral-specific response, respectively. The booster dose reinforces humoral- and cell-mediated-specific immune responses and highlights specific DMT-induced immune frailties, suggesting the need for specifically tailored strategies for immune-compromised patients to provide primary prophylaxis, early SARS-CoV-2 detection and the timely management of COVID-19 antiviral treatments.


Assuntos
COVID-19 , Esclerose Múltipla , Humanos , Vacinas contra COVID-19 , Linfócitos T , COVID-19/prevenção & controle , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2 , RNA Mensageiro , Imunidade , Vacinas de mRNA , Imunoglobulina G , Anticorpos Antivirais , Vacinação
2.
J Clin Med ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: covidwho-2239125

RESUMO

Aero-medical evacuation has been considered as a feasible and safe treatment option during COVID pandemic, particularly when the needs of affected patients exceed what local clinics and hospitals are supposed to provide. In this article, we analyzed the clinical course of 17 patients medically evacuated to the "L. Spallanzani" Institute in Rome, Italy from foreign countries, mainly Africa and Eastern Europe, who had COVID-19 pneumonia with, or without, coinfections such as malaria, HIV, tuberculosis and microbiologically confirmed sepsis syndrome. The aero-medical evacuation of patients with infectious diseases has become one of the greatest medical achievements we have reached during this pandemic; in fact, only two patients with life threatening coinfections have died. Although logistically difficult and cost consuming, medical evacuation should be considered as a treatment option more than a single extraordinary measure, especially among complex cases that require specific technical and human resources.

3.
Clin Microbiol Infect ; 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2239068
4.
Front Immunol ; 13: 920227, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2141940

RESUMO

Objective: To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time. Methods: Household contacts of COVID-19 cases screened for SARS-CoV-2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42). Of these, 28 subjects returned for a follow-up test (T1). The innate response was assessed by detecting a panel of soluble factors by multiplex-technology in plasma samples. Cell-mediated response was evaluated by measuring interferon (IFN)-γ levels by ELISA in plasma harvested from whole-blood stimulated with SARS-CoV-2 peptide pools, including spike (S), nucleocapsid (N) and membrane (M) proteins. The serological response was assessed by quantifying anti-Receptor-Binding-Domain (RBD), anti-Nucleocapsid (N), whole virus indirect immunofluorescence, and neutralizing antibodies. Results: At T0, higher levels of plasmatic IFN-α, IL-1ra, MCP-1 and IP-10, and lower levels of IL-1ß, IL-9, MIP-1ß and RANTES were observed in subjects with positive swab compared to individuals with a negative one (p<0.05). Plasmatic IFN-α was the only cytokine detectable in subjects with positive SARS-CoV-2 swabs with high accuracy for swab score positivity (0.93, p<0.0001). Among subjects with positive swabs, significant negative correlations were found among the RT-PCR cycle threshold values reported for genes S and N and IFN-α or IP-10 levels. At T0, the IFN-γ T-cell specific response was detected in 50% (5/10) of subjects with positive swab, while anti-RBD/anti-N antibodies showed a positivity rate of 10% (1/10). At T1, the IFN-γ T-cell specific response was detected in most of the confirmed-infection subjects (77.8%, 7/9), whereas the serological response was still observed in a minority of them (44.4%, 4/9). Overall, the swab test showed a moderate concordance with the T-cell response (78.6%, k=0.467), and a scarce concordance with the serological one (72.9%, k=0.194). Conclusions: Plasmatic IFN-α and the IFN-γ T-cell specific response appear early even in the absence of seroconversion, and show a greater positivity rate than the serological response in household contacts with positive swab.


Assuntos
COVID-19 , Quimiocina CXCL10 , Humanos , Imunidade , Interferon-alfa , Pandemias , SARS-CoV-2 , Linfócitos T
5.
Breathe (Sheffield, England) ; 18(1), 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-2102378

RESUMO

Implemented control measures brought about by the coronavirus disease 2019 (COVID-19) pandemic have changed the prevalence of other respiratory viruses, often relegating them to a secondary plan. However, it must not be forgotten that a diverse group of viruses, including other human coronaviruses, rhinoviruses, respiratory syncytial virus, human metapneumoviruses, parainfluenza and influenza, continue to be responsible for a large burden of disease. In fact, they are among the most common causes of acute upper and lower respiratory tract infections globally. Viral respiratory infections can be categorised in several ways, including by clinical syndrome or aetiological agent. We describe their clinical spectrum. Distinctive imaging features, advances in microbiological diagnosis and treatment of severe forms are also discussed. Educational aims To summarise the knowledge on the spectrum of disease that respiratory viral infections can cause and recognise how often they overlap. To learn the most common causes of respiratory viral infections and acknowledge other less frequent agents that may target certain key populations (e.g. immunocompromised patients). To improve awareness of the recent advances in diagnostic methods, including molecular assays and helpful features in imaging techniques. To identify supportive care strategies pivotal in the management of severe respiratory viral infections. Non-COVID-19 respiratory viral infections are a major burden of disease. Emerging molecular-based detection methods and knowledge of viral lower respiratory tract infections’ distinctive features improve diagnosis, treatment and outcome of severe forms.https://bit.ly/3qMqk3T

6.
Frontiers in immunology ; 13, 2022.
Artigo em Inglês | EuropePMC | ID: covidwho-1989256

RESUMO

Objective To better define the immunopathogenesis of COVID-19, the present study aims to characterize the early immune responses to SARS-CoV-2 infection in household contacts of COVID-19 cases. In particular, innate, T- and B-cell specific responses were evaluated over time. Methods Household contacts of COVID-19 cases screened for SARS−CoV−2 infection by nasopharyngeal swab for surveillance purposes were enrolled (T0, n=42). Of these, 28 subjects returned for a follow-up test (T1). The innate response was assessed by detecting a panel of soluble factors by multiplex-technology in plasma samples. Cell-mediated response was evaluated by measuring interferon (IFN)-γ levels by ELISA in plasma harvested from whole-blood stimulated with SARS−CoV−2 peptide pools, including spike (S), nucleocapsid (N) and membrane (M) proteins. The serological response was assessed by quantifying anti-Receptor-Binding-Domain (RBD), anti-Nucleocapsid (N), whole virus indirect immunofluorescence, and neutralizing antibodies. Results At T0, higher levels of plasmatic IFN-α, IL-1ra, MCP-1 and IP-10, and lower levels of IL-1β, IL-9, MIP-1β and RANTES were observed in subjects with positive swab compared to individuals with a negative one (p<0.05). Plasmatic IFN-α was the only cytokine detectable in subjects with positive SARS-CoV-2 swabs with high accuracy for swab score positivity (0.93, p<0.0001). Among subjects with positive swabs, significant negative correlations were found among the RT-PCR cycle threshold values reported for genes S and N and IFN-α or IP-10 levels. At T0, the IFN-γ T-cell specific response was detected in 50% (5/10) of subjects with positive swab, while anti-RBD/anti-N antibodies showed a positivity rate of 10% (1/10). At T1, the IFN-γ T-cell specific response was detected in most of the confirmed-infection subjects (77.8%, 7/9), whereas the serological response was still observed in a minority of them (44.4%, 4/9). Overall, the swab test showed a moderate concordance with the T-cell response (78.6%, k=0.467), and a scarce concordance with the serological one (72.9%, k=0.194). Conclusions Plasmatic IFN-α and the IFN-γ T-cell specific response appear early even in the absence of seroconversion, and show a greater positivity rate than the serological response in household contacts with positive swab.

7.
Pathogens ; 11(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1979327

RESUMO

Monoclonal antibodies are laboratory-made proteins that mimic the immune system's ability to fight off harmful microorganisms, including viruses such as Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2). The US Food and Drug Administration (FDA) and the European Medical Agency (EMA) have already authorized monoclonal antibodies of anti-SARS-CoV-2 to treat mild to moderate CoronaVIrus Disease-2019 (COVID-19) in patients at risk of developing severe disease. More recently, monoclonal antibodies anti-SARS-CoV-2 have been authorized for primary and secondary prophylaxis in patients at high risk of severe disease for background comorbidity. Primary or pre-exposure prophylaxis prevents COVID-19 in unexposed people, whereas secondary or postexposure prophylaxis prevent COVID-19 in recently exposed people to individuals with laboratory-confirmed SARS-CoV-2. This review focuses briefly on therapeutic indications of currently available monoclonal antibodies for COVID-19 pre- and postexposure prophylaxis and on the efficacy of convalescent plasma.

8.
J Antimicrob Chemother ; 77(10): 2683-2687, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: covidwho-1948341

RESUMO

BACKGROUND: Remdesivir is the first antiviral drug against SARS-CoV-2 approved for use in COVID-19 patients. OBJECTIVES: To study the pharmacokinetic inter-individual variability of remdesivir and its main metabolite GS-441524 in a real-world setting of COVID-19 inpatients and to identify possible associations with different demographic/biochemical variables. METHODS: Inpatients affected by SARS-CoV-2 infections, undergoing standard-dose remdesivir treatment, were prospectively enrolled. Blood samples were collected on day 4, immediately after (C0) and at 1 h (C1) and 24 h (C24) after infusion. Remdesivir and GS-441524 concentrations were measured using a validated UHPLC-MS/MS method and the AUC0-24 was calculated. At baseline, COVID-19 severity (ICU or no ICU), sex, age, BMI and renal and liver functions were assessed. Transaminases and estimated glomerular filtration rate (e-GFR) were also evaluated during treatment. Linear regression, logistic regression and multiple linear regression tests were used for statistical comparisons of pharmacokinetic parameters and variables. RESULTS: Eighty-five patients were included. The mean (CV%) values of remdesivir were: C0 2091 (99.1%) ng/mL, C1 139.7 (272.4%) ng/mL and AUC0-24 2791 (175.7%) ng·h/mL. The mean (CV%) values of GS-441524 were: C0 90.2 (49.5%) ng/mL, C1 104.9 (46.6%) ng/mL, C24 58.4 (66.9) ng/mL and AUC0-24 1976 (52.6%) ng·h/mL. The multiple regression analysis showed that age (P < 0.05) and e-GFR (P < 0.01) were independent predictors of GS-441524 plasma exposure. CONCLUSIONS: Our results showed a high interpatient variability of remdesivir and GS-441524 likely due to both age and renal function in COVID-19 inpatients. Further research is required to understand whether the pharmacokinetics of remdesivir and its metabolites may influence drug-related efficacy or toxic effect.


Assuntos
Tratamento Farmacológico da COVID-19 , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/efeitos adversos , Humanos , Pirróis , SARS-CoV-2 , Espectrometria de Massas em Tandem/métodos , Transaminases , Triazinas
9.
Breathe (Sheff) ; 18(1): 210151, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-1869056

RESUMO

Implemented control measures brought about by the coronavirus disease 2019 (COVID-19) pandemic have changed the prevalence of other respiratory viruses, often relegating them to a secondary plan. However, it must not be forgotten that a diverse group of viruses, including other human coronaviruses, rhinoviruses, respiratory syncytial virus, human metapneumoviruses, parainfluenza and influenza, continue to be responsible for a large burden of disease. In fact, they are among the most common causes of acute upper and lower respiratory tract infections globally. Viral respiratory infections can be categorised in several ways, including by clinical syndrome or aetiological agent. We describe their clinical spectrum. Distinctive imaging features, advances in microbiological diagnosis and treatment of severe forms are also discussed. Educational aims: To summarise the knowledge on the spectrum of disease that respiratory viral infections can cause and recognise how often they overlap.To learn the most common causes of respiratory viral infections and acknowledge other less frequent agents that may target certain key populations (e.g. immunocompromised patients).To improve awareness of the recent advances in diagnostic methods, including molecular assays and helpful features in imaging techniques.To identify supportive care strategies pivotal in the management of severe respiratory viral infections.

11.
Open Forum Infect Dis ; 7(10): ofaa403, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-1059676

RESUMO

BACKGROUND: The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unclear. We report the detection of viral RNA from different anatomical districts and the antibody profile in the first 2 COVID-19 cases diagnosed in Italy. METHODS: We tested for SARS-CoV-2 RNA clinical samples, either respiratory and nonrespiratory (ie, saliva, serum, urine, vomit, rectal, ocular, cutaneous, and cervico-vaginal swabs), longitudinally collected from both patients throughout the hospitalization. Serological analysis was carried out on serial serum samples to evaluate IgM, IgA, IgG, and neutralizing antibody levels. RESULTS: SARS-CoV-2 RNA was detected since the early phase of illness, lasting over 2 weeks in both upper and lower respiratory tract samples. Virus isolate was obtained from acute respiratory samples, while no infectious virus was rescued from late respiratory samples with low viral RNA load, collected when serum antibodies had been developed. Several other specimens came back positive, including saliva, vomit, rectal, cutaneous, cervico-vaginal, and ocular swabs. IgM, IgA, and IgG were detected within the first week of diagnosis, with IgG appearing earlier and at higher titers. Neutralizing antibodies developed during the second week, reaching high titers 32 days after diagnosis. CONCLUSIONS: Our longitudinal analysis showed that SARS-CoV-2 RNA can be detected in different body samples, which may be associated with broad tropism and different spectra of clinical manifestations and modes of transmission. Profiling antibody response and neutralizing activity can assist in laboratory diagnosis and surveillance actions.

12.
J Antimicrob Chemother ; 75(10): 2977-2980, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: covidwho-626863

RESUMO

BACKGROUND: Remdesivir is a prodrug of the nucleoside analogue GS-441524 and is under evaluation for treatment of SARS-CoV-2-infected patients. OBJECTIVES: To evaluate the pharmacokinetics of remdesivir and GS-441524 in plasma, bronchoalveolar aspirate (BAS) and CSF in two critically ill COVID-19 patients. METHODS: Remdesivir was administered at 200 mg loading dose on the first day followed by 12 days of 100 mg in two critically ill patients. Blood samples were collected immediately after (C0) and at 1 (C1) and 24 h (C24) after intravenous administration on day 3 until day 9. BAS samples were collected on Days 4, 7 and 9 from both patients while one CSF on Day 7 was obtained in one patient. Remdesivir and GS-441524 concentrations were measured in these samples using a validated UHPLC-MS/MS method. RESULTS: We observed higher concentrations of remdesivir at C0 (6- to 7-fold higher than EC50 from in vitro studies) and a notable decay at C1. GS-441524 plasma concentrations reached a peak at C1 and persisted until the next administration. Higher concentrations of GS-441524 were observed in the patient with mild renal dysfunction. Mean BAS/plasma concentration ratios of GS-441524 were 2.3% and 6.4% in Patient 1 and Patient 2, respectively. The CSF concentration found in Patient 2 was 25.7% with respect to plasma. GS-441524 levels in lung and CNS suggest compartmental differences in drug exposure. CONCLUSIONS: We report the first pharmacokinetic evaluation of remdesivir and GS-441524 in recovered COVID-19 patients. Further study of the pharmacokinetic profile of remdesivir, GS-441524 and the intracellular triphosphate form are required.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacocinética , Betacoronavirus , Infecções por Coronavirus/metabolismo , Estado Terminal/terapia , Pneumonia Viral/metabolismo , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/uso terapêutico , Trifosfato de Adenosina/farmacocinética , Trifosfato de Adenosina/uso terapêutico , Idoso , Alanina/farmacocinética , Alanina/uso terapêutico , Antivirais/uso terapêutico , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/tratamento farmacológico , Feminino , Humanos , Masculino , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/tratamento farmacológico , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , SARS-CoV-2
13.
J Transl Med ; 18(1): 233, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: covidwho-592324

RESUMO

BACKGROUND: Epidemiological, virological and pathogenetic characteristics of SARS-CoV-2 infection are under evaluation. A better understanding of the pathophysiology associated with COVID-19 is crucial to improve treatment modalities and to develop effective prevention strategies. Transcriptomic and proteomic data on the host response against SARS-CoV-2 still have anecdotic character; currently available data from other coronavirus infections are therefore a key source of information. METHODS: We investigated selected molecular aspects of three human coronavirus (HCoV) infections, namely SARS-CoV, MERS-CoV and HCoV-229E, through a network based-approach. A functional analysis of HCoV-host interactome was carried out in order to provide a theoretic host-pathogen interaction model for HCoV infections and in order to translate the results in prediction for SARS-CoV-2 pathogenesis. The 3D model of S-glycoprotein of SARS-CoV-2 was compared to the structure of the corresponding SARS-CoV, HCoV-229E and MERS-CoV S-glycoprotein. SARS-CoV, MERS-CoV, HCoV-229E and the host interactome were inferred through published protein-protein interactions (PPI) as well as gene co-expression, triggered by HCoV S-glycoprotein in host cells. RESULTS: Although the amino acid sequences of the S-glycoprotein were found to be different between the various HCoV, the structures showed high similarity, but the best 3D structural overlap shared by SARS-CoV and SARS-CoV-2, consistent with the shared ACE2 predicted receptor. The host interactome, linked to the S-glycoprotein of SARS-CoV and MERS-CoV, mainly highlighted innate immunity pathway components, such as Toll Like receptors, cytokines and chemokines. CONCLUSIONS: In this paper, we developed a network-based model with the aim to define molecular aspects of pathogenic phenotypes in HCoV infections. The resulting pattern may facilitate the process of structure-guided pharmaceutical and diagnostic research with the prospect to identify potential new biological targets.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/virologia , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Modelos Biológicos , Pneumonia Viral/genética , Pneumonia Viral/virologia , Mapeamento de Interação de Proteínas , COVID-19 , Humanos , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2 , Transdução de Sinais/genética , Proteínas do Envelope Viral
14.
Infect Dis Rep ; 12(1): 8543, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: covidwho-18538

RESUMO

On January 9 2020, the World Health Organization (WHO) declared the identification, by Chinese Health authorities, of a novel coronavirus, further classified as SARS-CoV-2 responsible of a disease (COVID-19) ranging from asymptomatic cases to severe respiratory involvement. On March 9 2020, WHO declared COVID-19 a global pandemic. Italy is the second most affected country by COVID-19 infection after China. The "L. Spallanzani" National Institute for the Infectious Diseases, IRCCS, Rome, Italy, has been the first Italian hospital to admit and manage patients affected by COVID-19. Hereby, we show our recommendations for the management of COVID-19 patients, based on very limited clinical evidences; they should be considered as expert opinions, which may be modified according to newly produced literature data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA